Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands.
نویسندگان
چکیده
Various agriculture management practices may have distinct influences on soil microbial communities and their ecological functions. In this study, we utilized GeoChip, a high-throughput microarray-based technique containing approximately 28,000 probes for genes involved in nitrogen (N)/carbon (C)/sulfur (S)/phosphorus (P) cycles and other processes, to evaluate the potential functions of soil microbial communities under conventional (CT), low-input (LI), and organic (ORG) management systems at an agricultural research site in Michigan. Compared to CT, a high diversity of functional genes was observed in LI. The functional gene diversity in ORG did not differ significantly from that of either CT or LI. Abundances of genes encoding enzymes involved in C/N/P/S cycles were generally lower in CT than in LI or ORG, with the exceptions of genes in pathways for lignin degradation, methane generation/oxidation, and assimilatory N reduction, which all remained unchanged. Canonical correlation analysis showed that selected soil (bulk density, pH, cation exchange capacity, total C, C/N ratio, NO(3)(-), NH(4)(+), available phosphorus content, and available potassium content) and crop (seed and whole biomass) variables could explain 69.5% of the variation of soil microbial community composition. Also, significant correlations were observed between NO(3)(-) concentration and denitrification genes, NH(4)(+) concentration and ammonification genes, and N(2)O flux and denitrification genes, indicating a close linkage between soil N availability or process and associated functional genes.
منابع مشابه
The Microbial Ecology and Horticultural Sustainability of Organically and Conventionally Managed Apples
Title of Document: THE MICROBIAL ECOLOGY AND HORTICULTURAL SUSTAINABILITY OF ORGANICALLY AND CONVENTIONALLY MANAGED APPLES. Andrea R. Ottesen, PhD, 2008 Directed By: Professor, Dr. Christopher S. Walsh, Plant Sciences and Landscape Architecture Objectives Organically and conventionally managed apple trees (Malus domestica Borkh) were evaluated for three growing seasons (2005-2007) to examine th...
متن کاملEffect of organic, conventional and mixed cultivation practices on soil microbial community structure and nematode abundance in a cultivated onion crop.
BACKGROUND Responses of the soil microbial and nematode community to organic and conventional agricultural practices were studied using the Teagasc Kinsealy Systems Comparison trial as the experimental system. The trial is a long-term field experiment which divides conventional and organic agriculture into component pest-control and soil treatment practices. We hypothesised that management prac...
متن کاملOrganic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression
Population growth and climate change challenge our food and farming systems and provide arguments for an increased intensification of agriculture. A promising option is eco-functional intensification through organic farming, an approach based on using and enhancing internal natural resources and processes to secure and improve agricultural productivity, while minimizing negative environmental i...
متن کاملSoil microbial communities are shaped by plant-driven changes in resource availability during secondary succession.
Although we understand the ecological processes eliciting changes in plant community composition during secondary succession, we do not understand whether co-occurring changes in plant detritus shape saprotrophic microbial communities in soil. In this study, we investigated soil microbial composition and function across an old-field chronosequence ranging from 16 to 86 years following agricultu...
متن کاملFunctional Potential of Soil Microbial Communities in the Maize Rhizosphere
Microbial communities in the rhizosphere make significant contributions to crop health and nutrient cycling. However, their ability to perform important biogeochemical processes remains uncharacterized. Here, we identified important functional genes that characterize the rhizosphere microbial community to understand metabolic capabilities in the maize rhizosphere using the GeoChip-based functio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 79 4 شماره
صفحات -
تاریخ انتشار 2013